量子生物学
——《生命是什么》摘要
作者:薛定谔
编者按:埃尔温.薛定谔(1887.8.12-1961.1.4)是奥地利物理学家、生物学家、哲学家,是量子物理学的最重要奠基人之一,著名的薛定谔的猫提出者。《生命是什么》是薛定谔在1944年的作品。在这部作品里提到了基因的稳定性的重要性。
1、(生命是什么)这个主题简单得不必用数学就可以解释了,而是因为问题太复杂了,以致不能完全用数学来表达。
2、一个活细胞的最重要的部分——染色体纤丝——可以恰当地称之为非周期性晶体。迄今为止,在物理学中我们碰到的只是周期性晶体。对于一位不高明的物理学家来说,周期性晶体已是十分有趣而复杂的东西了;它们构成了最有魅力和最复杂的一种物质结构,由于这些结构,无生命的自然界已经使得物理学家穷于应付了。可是,它们同非周期性晶体相比,还是相当简单而单调的。两者之间结构上的差别,就好比一张是一再重复出现同一种花纹的糊墙纸,另一幅是巧夺天工的刺绣,比如说,一条拉斐尔花毡,它显示的并不是单调的重复,而是那位大师绘制的一幅精致的、有条理的、有意义的图案。
3、几个原子都能在我们的感官上产生一种可知觉的印象——天哪,生命将象个什么样子呢?有一点是要着重指出的:可以断言,一个那种样子的有机体是不可能发展出有秩序的思想的。
4、思想(1)它本身是一个有秩序的东西,(2)只能应用于具有一定程度的秩序的材料,即知觉或经验。这有两种结果。第一,同思想密切对应的躯体组织(如密切对应于我的思想的我的头脑)一定是十分有秩序的组织,那就意味着在它内部发生的事件必须遵循严格的物理学定律,至少是有高度的准确性。第二,外界其他物体对于那个物理学上组织得很好的系统所产生的物理学印象,显然是对应于相应思想的知觉和经验的,构成了我所说的思想的材料——知觉和经验。因此,在我们的系统和别人的系统之间的物理学上的相互作用,一般来说,它们本身是具有某种程度的物理学秩序,就是说,它们也必须遵循严格的物理学定律并达到一定程度的准确性。
5、物理学定律是以原子统计学为根据的,因而只是近似的。
仅由少量原子构成的,对于一个或几个原子的碰撞就已经是敏感的有机体,为什么也还是不能实现上述的一切呢?
因为我们知道,所有的原子每时每刻都在进行着毫无秩序的热运动,就是说,这种运动抵消了它们的有秩序的行动,使得发生在少量原子之间的事件不能按照任何已知的定律表现出来。只有在无数的原子的合作中,统计学定律才开始影响和控制这些集合体的行为,它的精确性随着包括的原子数目的增加而增加。发生的事件就是通过那样的途径获得了真正有秩序的特征。现已知道,在生命有机体中起重要作用的所有物理学和化学的定律都是这种统计学的定律;人们所能想到的任何其他种类的规律性和秩序性,总是被原子的不停的运动所扰乱,或是被搞得不起作用。
6、任何一个物理学定律都会有的不准确性,我想补充一点非常重要的、定量的说明。即所谓的根号n律。
7、一个有机体和它经历的全部生物学的有关过程,必须具有极其多的“多原子”结构,必须防止偶然的“单原子”事件起到太重大的作用。“朴素物理学家”告诉我们那是必要的,.............如今,我们知道这个意见是错误的。正如我们即将明白的,有许多小得不可思议的原子团,小到不足以显示精确的统计学定律,可是在生命有机体内,它们对极有秩序和极有规律的事件确实起着支配作用。它们控制着有机体功能的重要特征;在所有这些情况下,显示了十分确定而严格的生物学定律。
8、我的一个体细胞,平均来说,只是变成我的那个卵细胞的第五十代或第六十代的“后代”。
9、我们已经明确地知道,达尔文是错误地把即使在最纯的群体里也会出现的细微的、连续的、偶然的变异,当作是自然选择的材料。因为已经证明,这些变异不是遗传的。
10、隐性突变只要它们是杂合的,自然选择对它们当然是不起作用的。如果它们是有害的,而突变通常又都是有害的,由于它们是潜在的,所以它们是不会被消除的。因此,大量的不利突变可以积累起来而并不立即造成损害。可是,它们一定会传递给后代中的半数个体,这对人、家畜、家禽或我们直接关心其优良体质的任何其他物种来说,都是非常适用的。
11、必须明确指出,我们的确也碰到过一些有利的突变。如果说自发突变是物种发展道路上的一小步,那么,我们得到的印象是,有些变化是以偶然的形式、冒着可能是有害的因而会被自动消除的风险而作出的“尝试”。由此引出了十分重要的一点。突变要成为自然选择的合适材料,必须是象它的实际情况那样地是罕有的事件。如果突变是如此地经常,以致有很多的机会,比如说,在同一个体内出现了一打不同的突变,而有害的突变又通常比有利的突变占优势,那末,物种非但不会通过选择得到改良,反而会停滞在没有改良的地步,甚至会消亡。基因的高度不变性造成的相当程度的保守性是十分必要的。
12、根据现在的了解,遗传的机制是同量子论的基础密切相关的,不,是建立在量子论的基础之上的。
13、自然界中正在进行着的每一件事,都是意味着它在其中进行的那部分世界的熵的增加。因此,一个生命有机体在不断地增加它的熵--你或者可以说是在增加正熵--并趋于接近最大值的熵的危险状态,那就是死亡。要摆脱死亡,就是说要活着,唯一的办法就是从环境里不断地汲取负熵,我们马上就会明白负熵是十分积极的东西。有机体就是赖负熵为生的。或者,更确切地说,新陈代谢中的本质的东西,乃是使有机体成功地消除了当它自身活着的时候不得不产生的全部的熵。
14、我们在前面说过:“以负熵为生”,就象是有机体本身吸引了一串负熵去抵消它在生活中产生的熵的增加,从而使它自身维持在一个稳定的而又很低的熵的水平上。
假如D是无序的度量,它的倒数1/D可以作为有序的一个直接度量。因为1/D的对数正好是D的负对数,玻尔兹曼的方程式可以写成这样:负熵=klog(1/D)。
因此,“负熵”的笨拙的表达可以换成一种更好一些的说法:取负号的熵,它本身是有序的一个量度。
15、根据我们已知的关于生命物质的结构,我们一定会发现,它的活动方式是无法归结为物理学的普遍定律的。
16、在有机体的生命周期里展开的事件,显示出一种美妙的规律性和秩序性,我们碰到过的任何一种无生命物质都是无法与之匹敌的。我们发现,它是受一群秩序性最高的原子所控制的,在每个细胞的原子总数里,这种原子团只占了很小的一部分。而且,根据我们已经形成的关于突变机制的观点,我们断定,在生殖细胞的“占统治地位的原子”团里,只要很少一些原子的位置发生移动,就能使有机体的宏观的遗传性状中出现一个明显的改变。
声明:文章仅代表作者个人观点,不代表本站观点